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MASS TRANSFER OF A SINGLE BUBBLE IN A MINIMALLY 

FLUIDIZED GRANULAR BED 

V. A. Borodulya, Yu. A. Buevich, and V. I. Dikalenko UDC 66.096.5 

The transfer of a gas admixture through the boundary of a cloud of closed circulation of gas is examined with 
a view to both molecular and convective dispersion. 

Mass transfer of gas bubbles with a dense phase of the fluidized bed largely determines the effectiveness of operation 
of catalytic chemical reactors and other industrial equipment with granular material. Therefore, in addition to the accumula- 
tion of experimental data, simple models of mass transfer were also suggested; some of them were explained in [ 1-10]. 
However, the problem of the theoretical determination of the corresponding mass-transfer coefficient and its dependence 
on the physical and regime parameters is far from being satisfactorily solved; this is undoubtedly due to the variety of 
phenomena of differing physical nature affecting the process of mass transfer. 

The numerous difficulties marking the problem of exchange of a single bubble with a single-phase liquid are in our 
case compounded by the fact that the dense phase of the fluidized bed is gas-permeable. This leads to the appearance of 
supplementary convective flows and complicates the purely hydrodynamic part of the problem: before the problem of 
mass transfer itself is solved, it is necessary to construct an acceptable model of the motion of both phases in the vicinity 
of the bubble; this in itself is a very nontrivial problem [1, 11, 12]. Two fundamentally different regimes of bubble motion 
are possible: with a cloud of closed circulation of gas and without it; the nature of the mass transfer will then also be 
fundamentally different. 

Furthermore, in the gas stream permeating the dense phase, the compressibility of the process of molecular diffusion 
of the admixture is important, i.e., a magnitude of the type of the known coefficient of sinuousness has to be introduced. 
moreover, additional convective dispersion appears due to the mixing of elementary jets in the intersected pore space of a 
moving porous body formed by the moving particles which macroscopically can be described as a diffusion-type random 
process (see, e.g., [ 13, 14]). This dispersion is already substantial for beds with particles of 'x,10 -2 -cm diameter; as a result, 
the effective diffusion coefficient in the vicinity of the bubble is nonuniform, being dependent on the particle size and the 
local porosity of the dense phase and on the relative gas velocity. 

The supplementary transfer of the gaseous admixture in the general case is effected by particles that absorb or ad- 
sorb it, and in this process particles participate that belong to the dense phase as well as those that come through the 
bubble [5, 6, 15]. Moreover, adsorption of the admixture by the particles, as well as chemical reactions with its participa- 
tion, obviously affect the convective diffusion of the admixture in the gas phase. 

Finally, serious difficulties are also posed by the necessity of expressing the nonsteadiness of the process of mass 
transfer. In addition to non-steady-state effects connected with the establishment of the steady-state regime and ceasing to be 
substantial after a certain time interval since the beginning of the process has passed, exceeding the value 2R/U, where R is 
the order of magnitude of the bubble radius or of the cloud of closed circulation around it, there appear effects that have 
no analog in the mass transfer of a bubble in a single-phase liquid. Firstly, a real bubble in a fluidized bed changes its 
volume in accordance with its lift, and this gives rise to a radial gas stream affecting the mass transfer [9, 10]. Secondly, 
the random pulsations of the bubble obviously lead not only to some nonsteadiness of the hydrodynamic fields but also 
to the "detachment" of parts of the cloud together with the gas contained in them; this is bound to intensify the mass 
transfer [4]. 
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Taking into account the collective effects in mass transfer of  a large number of  bubbles in a fluidized bed is also 
more complicated than the analogous problem for bubbles in a single-phase liquid, mostly because of  the more favorable 
conditions for the coalescence of  bubbles affecting the mass transfer [5, 16]. 

At present it is impossible to describe all these effects within the  framework of one model, and it is apparently 
expedient to examine them separately. The present work examines the steady-state problem of the mass transfer of  a 
single bubble with a gas cloud of  closed circulation in a minimally fluidized bed (where a change in the volume of the 
bubble may be disregarded [ 10]), neglecting the random "detachment" of  parts of the cloud and the absorption of  the ad- 
mixture by particles or its transformation as a result of  chemical reactions; attention centers on describing the transfer of  
the admixture through the outer boundary of  the cloud by the mean motion of  gas, as well as both molecular and con- 
vective dispersion. 

Simple estimates show that it is practically always possible to assume that the Peclet number, calculated by the 
radius and lift velocity of  a bubble and the effective diffusion coefficient in the solid phase (D ~ 0.1-1 cm2/sec, R B ~, 
1-10 cm), is considerably larger than unity.* Under these conditions the concentration of the admixture outside the 
system c loud-bubble  has to be uniform everywhere with the exception of  a thin boundary "diffusion" layer adjacent to 
the boundary of  the system. At the initial stage of the process of  mass transfer, an analogous statement is also correct for 
the region bordering on the inside on the boundary of  the cloud: the concentration of  the admixture in the cloud is non- 
uniform within a thin "inner" diffusion layer [17, 18]. At this stage, both diffusion layers are equally important, as was 
noted in [ 10], and they have to  be taken into account in the analysis. However, when this period is concluded, the 
circulatory nature of  the gas flow along the closed flow lines inside the bubble and the cloud becomes important, when 
"the basic condition of  the existence of  a boundary layer (constant concentration at the core of the flow) is not fulfilled." 
This was discussed in [ 19] for the internal problem of mass transfer involving a drop. 

Obviously, the duration of  the initial stage is proportional to 2R/U, and the characteristics of  mass transfer obtained 
from the solution of  the corresponding problem with two diffusion layers represent the lower boundaries of  the true 
characteristics. Their upper boundaries, attained at instants far byond the time of  circulation, may be obtained on the 
assumption that there is complete mixing inside the system c loud-bubble ,  when there is only an outer diffusion layer. In 
both cases, with fairly large bubbles and sufficiently small particles, when there is a region of  closed gas circulation, the 
chief resistance to mass transfer is concentrated on the outer boundary of the cloud. Below we first solve the problem with 
two diffusion layers. 

As the initial hydrodynamic model of  flow around a bubble we use the model from [1] in which the property out- 
side the bubble is taken as uniform, and in the system of spherical coordinates, associated with the center of  the bubble, we 
have 

, = ( u - . o )  1 -  - = - s i n ~ - O ,  - ( 1 )  
\ R~, ] U - -  u0 

(0 = 7r corresponds to the frontal point). The flow function (1) determines the mean velocity v of  the gas in the gaps 
between particles whose components are equal to 

R ~ 

The components of  the mean particle velocity are represented in the form 

( ( w r =  U 1 - - ~  cos0, w 0 . . . .  g 1-I- R~ ~sin0. (3) 
2r ~ ] 

Furthermore, we also need the components of  the relative gas velocity u = v - w for r = Re, which, according to (2) 
and (3), are equal to 

3uoU 3uo 
ur - cos O, u0 -- sin O. 

U + 2u 0 /1 + 2u o (4) 

*The conclusion in [7] that the Peclet numbers for real fluidized systems are smaller than unity is inaccurate because in 
the estimates effective diffusion coefficients of  the order of  magnitude of  100 cm 2/sec were used. This conclusion was 
apparently reached because the process of  small-scale dispersion (with an effective coefficient of  the order of magnitude 
of  0.1-1 cm2/sec) was identified with the large-scale mixing of the gas in the apparatus as a whole, connected not so much 
with small-scale dispersion but rather with mixing caused by the passage of  the bubbles and by circulation currents. 
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The magnitudes u o and U may be written in the form* 

U, 
u0 = ~ ,  U ~ 0.9(1 - -  : ) l l ~ ( g R ~ ) l l ~ "  

8 

We will now examine the small-scale dispersion of  the admixture inside the dense phase. 
flow of  the admixture that is not absorbed by the particles can be represented in the form 

(5) 

According to [22], the 

q = - -  D m V c  -) < ~ ] c ' v ' ~ ,  (6) 

where the structural function ~ is equal to unity in the gaps between the particles and to zero inside them, and the prime 
denotes pulsation of  the magnitudes around their mean values. In the general case, the effective coefficient D m of molecular 
diffusion in the gas phase of  the dispersed medium may depend not only on the shape and orientation of  the particles D o 
and e,  respectively, but also on the parameters characterizing the flow around individual particles of  the dispersed phase 
and the mean motion of  the medium [23]. 

The second term on the right-hand side of  (6) describes the convective dispersion of  the admixture caused by the 
mixing of  the elementary jets appearing upon flow around the regularly situated particles as well as by random "pseudo- 
turbulent" motions connected with the fluctuations of  porosity in the system. In a motionless granular bed these 
fluctuations originate as a result of  random deviations of  the real packing from the idealized regular packing, in the fluidized 
bed on account of the chaotic motion of  the suspended particles; such fluctuations were investigated theoretically in [24]. 

With the aid of  a hypothesis of  the type of  the well-known Prandtl hypothesis about the length of  mixing in the 
theory of  turbulence, the mentioned term is transformed to the form D e x7 c, where D c is the tensor magnitude, one of whose 
principal axes has the direction of  the local mean relative gas velocity u, and whose other two axes are arbitrarily orientated 
in a plane normal to u (see [ 13, 14], and also the review of  empirical data in [25]). The corresponding eigenvalues of  this 
tensor determine the coefficients of  longitudinal and transverse convective dispersion, which are usually written in the form 

Dr il = k rJ 2 a s u ,  Dc.  :L = k~_2asu, '  (7) 

where in the general case, kl) and kj. may also depend on the Reynolds and Peclet numbers for one particle [14, 25]. For 
idealized packing of  particles, the model in [13] yields for these coefficients the constant values kl! = 0.76, k I = 0.18, which 
do not differ very much from the empirical values [14, 25]. 

With a view to the approximate nature of  the developed theory, due mainly to the approximate nature of  the 
hydrodynamic model in [1 ], which leads to the formulas (1)-(4), we neglect the dependence on the local hydrodynamic 
situation at the level of individual particles of  the values kit and k l (which corresponds to neglecting the pseudoturbulent 
convective dispersion) and of  the coefficient D (which corresponds to using the known hypothesis of  superposition). 

rla 

Then, if we estimate the coefficients in (7) on the basis of [13], and use the theory of [26], well confirmed by experiments, 
for calculating D m , we obtain from (6) and (7) that 

q = - -Dvc ,  DII -- [5Do "4- 1.52aeu, D j - -  [sD0 + 0.36asu, 
(8) 

[3 = (17 "4- 79) - I  {5 - -  119,4,[(5 - -  l lp) z "4- 7(1 - -  9)(17+79)P/~}, p =  1--s. 

In particular, the radial flow of  admixture at the boundary of  the cloud (i.e., with r = R e) on the basis of (8) is written as 
follows: 

qr = - -  ([SD0 4- 1.52ae lurl "4- 0.3gas I~ol) ( & / 
\ 0 r 1 '  

(9) 

*In the minimally fluidized state, u ,  coincides with the velocity of  fluidization. The presented formula for the lift velocity 

" of  the bubble follows from the experimentally established correlation u ~ o . 7 1 g ~ / 2 v ~ / 6 i n  [1], where V is the true volume of  
the bubble on the assumption that the part of  the volume of the sphere with radius RB, coinciding with the radius of  the 

frontal part of  the bubble, taken up by the wake is equal to f. The frequently used relationship u .~ o . ~  (2eR'~) I ~ (gRs I /2  

where R~ < R B is the radius of  the sphere with equal volume as the bubble, follows from the Davis-Taylor  formula 

u = (2 /3) (gRDI/2  , if f ~ 0.915, as was found for large bubbles in a single-phase liquid. In a fluidized bed f is many times 
smaller (according to data of  [20], e.g., f ~- 0 .25-0.35,  Chiba and Kobayashi [5] took f = 0.25). We therefore gave 
preference here to Eq. (5). However, the difference between these formulas is not large (this is due to the fact that the 
value 1 - f figures with a small power in them, 1/6) and it is possibly within the experimental error. We also point 
out that the formula in (5) applies to steady-state motion of  the bubble and is correct for time of the order of  magnitude 
2R/U after the beginning of  the motion [211. 
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where u and u 0 are determined in (4).* 

The effective coefficient of  radial diffusion, figuring in (9), is nonuniform on the surface of  the cloud. Taking 
relations (4) into account, we see that the second term of the expression for this coefficient usually predominates over the 
third term, i.e., the coefficient has maxima when the values of  0 are very close to 0 and rr, and minima when 0 = ~r/2. 

The equations of  steady-state convective diffusion on both sides of  the outer boundary of  the cloud are written in 
the form 

( 0 o0 0)lc } 
Or "0-7 + = V  ' (10) r 00 c' ' c' 

where the symbols with primes refer to the region lying inside the outer boundary of  the cloud; with r = R e, the conditions 
of  continuity of  concentration and of  the normal component of  the diffusion flux have to be satisfied. 

In principle, two extreme situations are possible., In one of  them the characteristic thickness of  the inner diffusion 
layer (let us say, at the frontal point of  the bubble) is much smaller than the thickness of  the cloud, so that this layer lies 
practically entirely (with the exception of  a small region near the wake that plays no particular part in the mass transfer) 
inside the cloud. In that case, D' is determined with the aid of  the same functional relation as D. In the second situation 
the cloud is considerably thinner than the diffusion layer, and D' is a spherical tensor with eigenvalue equal to D o. We will 
examine only the first situation because it is much more realistic for bubbles characterized by large Peclet numbers. 

Using the approximation of  a thin diffusion boundary layer [17], and also expressions (1), (2), (4), and (9), we 
transform (10) with the aid of  standard methods into the classical diffusion equation 

otc } 02{c} 
a--~ c' = - - ~  c ' '  (11) 

Here we use the new independent variables ~ from (1) and 

~=_.~3 (U -- uo) DR~ bi (1 q- y Icos 0l + V' sin 0) sina0d0 = 

1 (U-.o) {z + acosO-cos3O + -T  tvp(o)+ v's(o)l}, = - -  D 3 3 
2 

(12) 

and we introduce the functions 

/sin~ O, a / 2  < 0 < a ,  

p ( 0 ) =  [2--sin"O, O<O<rt/2, 

s(O)= 3 (n - -  o) + sin 20 - -  ~ 8  sin 40 

(13) 

and the parameters 

D =  13 Do, ?=4-56 ea Uuo - -  - -  , y ' =  1.08 
e [~Do U + 2Uo 

ea Uo 
[3Do U q- 2u o 

Equation (11) has to be solved with the ordinary initial and boundary conditions 

(14) 

C~Co, r c'~c~, ~-+--oo; c=c' ,  OC OC' 
-- , ~ = 0 ;  ar a~ 

(15) 

*We point out that in works dealing with the mass transfer of  bubbles with a dense phase of  the fluidized bed, the presence 
of  a convective component in the effective diffusion coefficient of  the gaseous admixture is. usually not emphasized although 

�9 in a bed of  fairly large particles it is very important. An exception is the article [27] in which the effective coefficient of  
radial diffusion in the dense phase, which has to figure in the relation (9), is taken equal to the effective coefficient of  
transverse diffusion and in the bed as a whole. This is incorrect for two reasons. Firstly, the identity of  the small-scale 
mixing in the dense phase and the large-scale mixing in the entire bed is admitted. Secondly, at the boundary of  the cloud, 
the "longitudinal" (radial) component of  the mean relative gas velocity has the same order of  magnitude as the "transverse" 
(tangential) component,  and the more intensive longitudinal convective dispersion will play the most important part. 
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The solution of  the problem (11), (15) has the form 

c~176  erfc g ~ '  c' = c ; q  erfc - - .  (16) 
~ = ~0 + - - ~ - -  2 r  ' 2 2 ~., ~- 

The effective radial flow of  the admixture through the outer  boundary of  the cloud is calculated from (9) and (16), 
taking into account the determination of  $ and ~ in (1) and (12). As a result we have 

q~ 21/-2-~ ]c~163 " [(O, % ?'), 
Ro (17) 

f(O, 7, V') = (1 + ?]cosO] + V' sinO) sinzO 
{2 + 3 cos 0 - -  cos a 0 + (3/4)[yp (0) + V's (0)l} t/-~ 

The full flow of  the admixture is obtained from this after integration over the sphere r = R c, and it is equal to 

(2 = 3 ---2 Ic~176 ?% 

F (,g, 7') = S f (0, 7, 7') sin OdO. 
0 

(18) 

Also interesting is the distribution of the flow over the surface of  the outer  boundary of  the cloud characterized by the 
magnitude 

qr 4aR~q,. _ 2f(O, ?, V') 
< q , . >  Q F(y,  y ')  ' (19) 

where f and F are determined in (17) and (18), respectively. 

The. condit ion of  correctness of  the assumption that  the inner diffusion layer with practically all values of  0 lies 
inside the cloud, i.e., in a region occupied by the dispersed medium, assumes the following form: 

[  "12 1 _ D << U - - u 0  I - -  . ( 2 0 )  

Pe URc U , U + 2uo ] J 

For  large bubbles (U ~ u o) we obtain 

1 D ( u o ~  2 
Pe --  URo << \ - U - )  ' (21) 

and it can be seen that  with sufficiently large Peclet numbers, when the approximation of  the thin diffusion 1wer is 
justified, this assumption is fulfilled for bubbles of  all sizes, with the exception of  the very smallest for which U is 
comparable with %.  

The dependence of  F from (18) on 3', with different 3", is shown in Fig. 1, from which it can be seen that the 
existence of  convective dispersion substantiaily intensifies the mass transfer. Figure 2 presents the dependences of  the 
values from (19) on 0 for different 3' and 3" = 0. It can be seen that  the presence of  a minimum of  the coefficient of 
radial diffusion in (9) causes a relative weakening of  mass transfer in the equatorial zone of  the bubble 0 • rr/2. Figure 
3 shows the effect of  the contribution from the transverse convective dispersion on the distribution of  the local flow over 
the outer  surface of  the cloud: as was to be expected, it leads to a certain smoothing of  the previously mentioned minimum 
of  the local flow in the equatorial zone.* 

*As was pointed out  in [28], the nonuniformity of  the effective diffusion coefficient leads ~to the appearance of  new 
effects. Yet in the examined problem of  mass transfer of  a bubble they are in some sense inverse to those of  [28], where 
the problem of  the heat and mass transfer of  a solid body submerged into an infiltrated granular bed was investigated. As 
distinct from the situation examined here, where the diffusion coefficient is minimal near the equator of  the bubble in the 
flow, in [28] this coefficient attained its maximum at the equator of  the sphere in the flow. 
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Fig. 1. Dependence of  the coefficient F, determining the intensity 
of  mass transfer between the bubble and the dense phase, on the 
parameters 3  ̀and 1" characterizing the specific weight of  the longi- 
tudinal and transverse convective dispersions, respectively: 1) 3`' = 0; 
2) 3`' = 0.13'; 3) 3'' = 0.23'. 

Fig. 2. Distribution of  local flow over the surface of  the closed- 
circulation cloud with 3'' = 0 and different 7: 1) 3' = 0; 2) 1; 3) 5; 
4) 10. 
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Fig. 3. Effect of  the transverse convective dispersion on the distribu- 
tion of  the local flow: 3' = 5, 3'' = 0 (curve 1), and 3" = 0.23' (curve 
2). 

Fig. 4. Dependence of  the mass-transfer coefficient K on the bubble 
radius with Uo/U -- 0, 3'' = 0, e --- 0.5, and different 3': 1) I, = 0; 2) 1; 
3) 2; 4) 5; the dots correspond to the experiments in [5]: 5) glass 
beads; 6, 7) crushed glass with a = 1.05"10 -2 cm and 0.7"10 -2 cm, 
respectively; D o = 0.2 cm 2/sec. 

The relations obtained above apply to the case when both diffusion boundary layers are substantial, and they 
describe the lower boundaries for the true local and full flows qr and Q, respectively. The upper boundaries for these flows, 
corresponding to the regime with one diffusion layer established fairly high above the gas-separating screen, are twice as high 
as the lower ones. They can also be characterized by the curves in Figs. 1-3. 

The obtained results make it possible to express in explicit form various mass-transfer coefficients that were previous- 
ly introduced into the literature and were distinguished by the fact that they correlate the flow of  admixture Q with unit 
volume or unit surface of  a real bubble, of  a sphere with radius R B or a sphere with radius Re, or else (if we deal with a 
number of  bubbles) with unit specific surface (per bubble) of  the layer as a whole or of  its dense phase. For instance, the 
mass-transfer coefficient introduced in [ 5 ] into the Calculation per unit volume of  the bubble is equal to (here and below 
we have in mind the upper boundary for characteristics of  mass transfer) 

Q = L ( g D O  ~ 1 / 2  

K =  (4/3)~R~(1--f)lco--C;I t R~ ] ' 
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L =  2V/~gFe(1-f)  ( + ) ~ / 2 ( 1 + @ )  ~/2" (22) 

This coefficient decreases with increasing size of  the bubble (in the limit case, as R'~/4 , when U 0/U = 0) and increases 
with increasing particle size, which is accompanied by an increase of  u o and 3' (or F). 

To compare the developed theory with experiments, it is necessary to have data from experiments with single 
bubbles in a bed that is in a state close to minimum fiuidization, where it would be guaranteed that there is no absorption 
of  the gaseous admixture by particles and no chemical reactions. From among the experiments in [1-5, 15, 16, 27], and 
also in [29, 30], this condition is fulfilled only by the experiments in [5], which were well correlated by a formula of the 
type of  (22) with L ~ 2 . 3 9 e ( 1 - f )  "1 fo r f  ~0 .25  and D = D O = 0.205 cm2/sec. For the beds of  glass beads (a = 1.05"10 "2 
cm, u ,  = 3.9 cm/sec, e = 0.49) and of  particles of  crushed glass (a = 1.05"10 -2 cm, u .  = 5.0 cm/sec, e = 0.53, and a = 
0.70"10 -2 cm, u .  = 3.1 cm/sec, e = 0.54) investigated in [51 we have, according to [5], L = 1.56, 1.70, and 1.72, 
respectively. In reality, the coefficient L from (22) is a slowly changing function of  the particle size. For R B = 3 cm, the 
corresponding values of  the parameter 3' from (14) are equal to 1.6, 1.9, and 0.9, respectively, and for L the calculation 
yields 1.8, 2.0, and 1.9, respectively. Within the experimental error in [5], these values are satisfactory, as are those follow- 
ing from the formula in [5].* Calculation according to the theory of  work [7], with D = D O and f ~0.25,yields the 
exaggerated result L >1 3.2 (the equality sign corresponds to Uo/U = 0). 

To illustrate the obtained relations better, Fig. 4 shows the curves K = K(R B), corresponding to (u o/U) = 0, 3`' = 0, 
and different values of  3`. The figure also contains the experimental data of  article [5]. 

NOTATION 

a, particle radius; c, concentration of  the admixture; D, D c , tensors of  effective diffusion coefficients and of  co- 
efficients of  convective dispersion, respectively; D, parameter in (14); D o, D m , coefficients of  molecular diffusion, respec- 
tively not taking and taking compressibility into account; F, f, functions in (17) and (18), respectively; f, fraction of  the 
volume of  the sphere with radius R B occupied by the wake of  the bubble; g, acceleration of  gravity; K, mass-transfer 
coefficient determined in (22); k, coefficient in (7); L, coefficient in (22); p, s, functions determined in (13); Q, q, flow of  
admixture for the entire bubble and local flow, respectively; R B , R c, radii of  bubble and of  cloud of  closed circulation, 
respectively; r, radial coordinate; U, lift velocity of  the bubble; u=v--w; u0=u,/e; u , ,  minimum velocity of  fluidization; V, 
volume of  bubble; v, w, mean gas velocities in the gaps between particles and of  the particles, respectively; ~, parameter 
determined in (8); 7, 3`', parameters from (14); e, porosity of  the dense phase and of  the cloud; 0, polar angle; ~, independent 
variable introduced in (12); p = 1 - e; ~, flow function. 
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